87 research outputs found

    On a power-type coupled system of Monge-Ampère equations

    Get PDF
    We study an elliptic system coupled by Monge--Amp\`{e}re equations:{     detD2u1=(u2)αamp;in  Ω,     detD2u2=(u1)βamp;in Ω,     u1lt;0, u2lt;0amp;in  Ω,    u1=u2=0amp;on Ω,  \begin{cases}      \det D^{2}u_{1}={(-u_{2})}^\alpha & \hbox{in  $\Omega,$} \\      \det D^{2}u_{2}={(-u_{1})}^\beta & \hbox{in $\Omega,$} \\      u_{1}<0,\ u_{2}<0& \hbox{in  $\Omega,$}\\     u_{1}=u_{2}=0 & \hbox{on $ \partial \Omega,$}   \end{cases}%here Ω\Omega~is a smooth, bounded and strictly convex domainin~RN\mathbb{R}^{N}, N2N\geq2, \alpha >0, \beta >0. When Ω\Omega isthe unit ball in RN\mathbb{R}^{N}, we use index theory of fixedpoints for completely continuous operators to get existence, uniqueness results and nonexistence of radial convex solutions undersome corresponding assumptions on α\alpha, β\beta. When \alpha>0,\beta>0 and αβ=N2\alpha\beta=N^2  we also study a~corresponding eigenvalue problem in more general domains

    Functional characterization of a short peptidoglycan recognition protein from Chinese giant salamander (Andrias davidianus)

    Get PDF
    This work was supported by the National Natural Science Foundation of China (Grant no. 31302221, 31172408 and 31272666) and Jiangsu Province (Grant no. BK20171274 and BK2011418), and partially by the Opening Project of Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland (Grant no. K2016-08). QZ was supported by the “Qinglan” project of Jiangsu province of China.Peer reviewedPublisher PD

    Hard rock deep hole cutting blasting technology in vertical shaft freezing bedrock section construction

    Get PDF
    Using the traditional cutting blasting technology in vertical shaft construction has some features, e.g. slows driving speed, gangue with large volume and throwing high. Moreover, large explosive charge initiation has a serious influence on freezing pipes and freezing wall. In this study, the periphery hole charge and charge structure was optimized, and the blasting model of the bedrock vertical shaft section was established by using the ANSYS/LS-DYNA numerical simulation software. In addition, stress concentration of the large diameter empty hole and its influence of blasting efficiency in blasting were analyzed. The field experiment was conducted to verify the blasting results. The results show that using large diameter empty hole blasting technology in vertical shaft construction of frozen hard rock section can significantly improve the speed of vertical shaft construction, obtain the excellent blasting effect and guarantee the safety of freezing pipes and freezing wall

    Molecular characterization and expression analysis of four fish-specific CC chemokine receptors CCR4La, CCR4Lc1, CCR4Lc2 and CCR11 in rainbow trout (Oncorhynchus mykiss)

    Get PDF
    ZQ was supported financially by the “Qinglan” project of Jiangsu Province and the Overseas Training Plan for Young and Middle-aged Teachers and Principals of College and Universities in Jiangsu Province, China. This work was partially supported by grants from the National Natural Science Foundation of China (31302221 and 31272666) and Jiangsu Province (BK2011418 and BK20151297). TW received funding from the Marine Alliance for Science and Technology for Scotland (MASTS), a pooling initiative funded by the Scottish Funding Council (grant reference HR09011), and JWH was supported by the Swiss National Science Foundation (grant reference CRSII3_147649-1).Peer reviewedPostprin

    3-D modeling and molecular dynamics simulation of interleukin-22 from the So-iny mullet, Liza haematocheila

    Get PDF
    Background: Interleukin-22 (IL-22) plays an important role in the regulation of immune responses. However, little is known about its function or structure in fish. Results: The IL-22 gene was first cloned from So-iny mullet ( Liza haematocheila ), one of commercially important fish species in China. Then, 3-D structure model of the mullet IL-22 was constructed by comparative modeling method using human IL-22 (1M4R) as template, and a 5 ns molecular dynamics (MD) was studied. The open reading frame (ORF) of mullet IL-22 cDNA was 555 bp, encoding 184 amino acids. The mullet IL-22 shared higher identities with the other fish IL-22 homologs and possessed a conserved IL-10 signature motif at its C-terminal. The mullet IL-22 model possessed six conserved helix structure. PROCHECK, SAVES and Molprobity server analysis confirmed that this model threaded well with human IL-22. Strikingly, analysis with CastP, cons-PPISP server suggested that the cysteines in mullet IL-22 might not be involved in the forming of disulfide bond for structural stabilization, but related to protein-protein interactions. Conclusions: The structure of IL-22 in So-iny mullet (Liza haematocheila) was constructed using comparative modeling method which provide more information for studying the function of fish IL-22

    Hard rock deep hole cutting blasting technology in vertical shaft freezing bedrock section construction

    Get PDF
    Using the traditional cutting blasting technology in vertical shaft construction has some features, e.g. slows driving speed, gangue with large volume and throwing high. Moreover, large explosive charge initiation has a serious influence on freezing pipes and freezing wall. In this study, the periphery hole charge and charge structure was optimized, and the blasting model of the bedrock vertical shaft section was established by using the ANSYS/LS-DYNA numerical simulation software. In addition, stress concentration of the large diameter empty hole and its influence of blasting efficiency in blasting were analyzed. The field experiment was conducted to verify the blasting results. The results show that using large diameter empty hole blasting technology in vertical shaft construction of frozen hard rock section can significantly improve the speed of vertical shaft construction, obtain the excellent blasting effect and guarantee the safety of freezing pipes and freezing wall

    Characterization of the ligand binding of PGRP-L in half-smooth tongue sole ( Cynoglossus semilaevis ) by molecular dynamics and free energy calculation

    Get PDF
    Background: Peptidoglycan (PGN) recognition proteins (PGRPs) are important pattern recognition receptors of the host innate immune system that are involved in the immune defense against bacterial pathogens. PGRPs have been characterized in several fish species. The PGN-binding ability is important for the function of PGRPs. However, the PGRP-PGN interaction mechanism in fish remains unclear. In the present study, the 3-D model of a long PGRP of half-smooth tongue sole (Cynoglossus semilaevis) (csPGRP-L), a marine teleost with great economic value, was constructed through the comparative modeling method, and the key amino acids involved in the interaction with Lys-type PGNs and Dap-type PGNs were analyzed by molecular dynamics and molecular docking methods. Results: csPGRP-L possessed a typical PGRP structure, consisting of five \u3b2-sheets and four \u3b1-helices. Molecular docking showed that the van der Waals forces had a slightly larger contribution than Coulombic interaction in the csPGRP-L-PGN complex. Moreover, the binding energies of csPGRP-L-PGNs computed by MM-PBSA method revealed that csPGRP-L might selectively bind both types of MTP-PGNs and MPP-PGNs. In addition, the binding energy of each residue of csPGRP-L was also calculated, revealing that the residues involved in the interaction with Lys-type PGNs were different from that with Dap-type PGNs. Conclusions: The 3-D structure of csPGRP-L possessed typical PGRP structure and might selectively bind both types of MTP- and MPP-PGNs, which provided useful insights to understanding the functions of fish PGRPs
    corecore